Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering
Semester :	7
Course Code:	15CV741
Course Title:	Design of bridges
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	40
Course Plan Author:	MOHAN K T

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS	5
1. Course Outcomes	
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	8
5. Curricular Gap and Content	
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	9
D1. TEACHING PLAN - 1	9
Module - 1	9
Module – 2	
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	11
b. Assignment -1	
D2. TEACHING PLAN - 2	14
Module – 3	14
Module – 4	15
E2. CIA EXAM – 2	16
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	24
Module – 5	24
E3. CIA EXAM – 3	25
a. Model Question Paper - 3	
b. Assignment – 3	26
F. EXAM PREPARATION	35
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B. E
Year / Semester :	4th/VII	Academic Year:	2019-20
Course Title:	Design of bridges	Course Code:	15CV741
Credit / L-T-P:	03	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Mohan K T	Sign	Dt:
Checked By:	SHIVAPRASAD D G	Sign	Dt:
CO Targets	CIA Target : 85 %	SEE Target:	90 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
	Introduction to bridges, classification, computation of	-	Preliminary	L2
	discharge, linear waterway, economic span, afflux, scour		Surveying of	Understand
	depth. Design loads for bridges. Introduction to I.R.C. loading		Bridges	
	standards, Load Distribution Theory, Bridge slabs, Effective			
	width, Introduction to methods as per I.R.C.			
2	Design of Straight Slab Bridges and skew slab.	8	Bending	L6
		(4,4)	moment , shear forces	Design
	Design of T beam bridges(up to three girder only)		Bending moment	
	Proportioning of components, analysis of slab using IRC Class		and shear force	Design
	AA tracked vehicle, structural design of slab, analysis of cross		for T-beam	
	girder for dead load & IRC Class AA tracked vehicle, structural		bridge.	
	design of cross girder. Analysis of main girder using Courbon's method, calculation		Courbon's method.	
	of dead load BM and SF, calculation of live load B M & S F		methoa.	
	using IRC Class AA Tracked vehicle. Structural design of main			
	girder.			
	Design of Box culvert (Single vent only), Pipe culverts	8	Moments and	L6
'		(4,4)	shear force, load	Design
			distribution.	Ŭ
5	Substructures – Design of Piers and abutments. Introduction	8	Connections and	L6
	to Bridge bearings, Hinges and Expansion joints.(No design)	(4,4)	laying of the	Design
			bridges.	
-	Total	40	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters Availability
es		in book

Α	Text books (Title, Authors, Edition, Publisher, Year.)		_
	Design of Bridges, D.JOHNSON VECTOR	1,2,3,4,5	In Dept
4, 5		1,2,3,4,5	in Dept
	Design of Bridges, T R Jagadeesh, M A Jayaram	1,2,3,4,5	In Dept
4,5			
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Design of Bridges, N. Krishna raju, CBS Publishers & Distributors, 2017.	1,2,3,4,5	In Dept
С	Concept Videos or Simulation for Understanding	-	-
C1	https://youtu.be/RB2k5hSYO3U		
	https://youtu.be/5k8vdDSK6jU		
C2	https://youtu.be/U4a0q4hYUWw, https://youtu.be/rAH6eP1G4N0		
C3	https://youtu.be/TsjtbH7lSOE , https://youtu.be/RX-		
<u> </u>	WImcb73Y https://youtu.be/Llg1rYoZMfU, https://youtu.be/3UBrBrpW-		
C4	uY, https://youtu.be/1t_tUmLUWcE https://youtu.be/7HXF3oGWRIA,		
	https://youtu.be/BSBV2-f8zgY.		
C5	https://youtu.be/TDuvNevZwp0		
05	https://youtu.be/xh876dxfLnE		
	https://youtu.be/BllNVVo2HnM		
	https://youtu.be/KDXVQ3TMTlo		
C6	https://nptel.ac.in/courses/105105165/18		
C7	https://www.youtube.com/watch?v=ZifKweRcDoA		
C8	https://www.youtube.com/watch?v=ZifKweRcDoA		
C9	http://www.snehabearings.com/index1.html		
C10	https://youtu.be/WHS5a3LjrSE		
D	Software Tools for Design	-	-
	CSI Bridge, Sap, Staad. Pro.		
E	Pacant Davalanmants for Pacaarch		
	Recent Developments for Research		-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			
?			
		1	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1						
3						
3						
5						
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Introduction and Classification	Higher		Understa
		education,		nd
		GATE,		L2
2	Design of Slabs	Higher		Design
		education,		L6
		GATE,		
3	Design of cross and Longitudinal Girders	Higher		Design
		education,		L6
		GATE,		
4	Design of pipe and Box culvert.	Higher		Design
		education,		L6
		GATE,		
5	Introduction to Bridge bearings, Design	Higher		Design
	od Piers and Abutments.	education,		L6
		GATE,		
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Je e	0 0.0.00					· · · ·	
Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	15CV741.1	Understand the preliminary	4	Effects of	Lecture	Internal	L6
		investigation on bridges.		water		assessme	Evaluate
				discharge		nt and	
				on bridges		Assignme nt	
1	15CV741 2	Understand the type of load is	4	Loads	Lecture/	Internal	L6
	13017412	suitable for design.	4	applicable		assessme	Evaluate
		5		on the		nt and	
				bridges		Assignme	
						nt	
2	15CV741.3	Design the Bending moment and	4	Straight	Lecture	Internal	_ L6
		shear force by using working stress		slab		assessme	Evaluate
		method.				nt and Assignme	
						nt	
2	15CV741.4	Design the Bending moment and	4	Skew slab	Lecture	Internal	L6
	0 7 7 1	shear force by using working stress				assessme	Evaluate
		method.				nt and	
						Assignme	
						nt	
3	15CV741.5	Design the Bending moment and	4	Longitudin	Lecture	Internal	L2 Evaluata
		shear force for longitudinal girder by using courbons method.		al Girder		assessme nt and	Evaluate
		by using courbons method.				Assignme	
						nt	
3	15CV741.6	Design the Bending moment and	4	Cross	Lecture/	Internal	L6

		shear force for transverse girder by using courbons method.		Girder		assessme nt and Assignme nt	
4		Design the Bending moment for box culvert by kanis method.	4	Box culvert	Tutorial		L2 Understand
4		Design the loads and design for pipe culvert	4	Pipe Culvert			L2 Understand
5		Design the loads on the abutments and piers.	4	sizes of the structural componen ts		Internal assessme nt and Assignme nt	L2 Understand
5		Understand the purpose of providing bearings.	4	Loads distribution on bridges.		Internal assessme nt and Assignme nt	L2 Understand
-	-	Total	40	-	-	-	L2-L6

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

	The should be able to employ 7 apply the course tearnings to		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Used in the preliminary study in the bridges .	CO1	L2
1	Used for the design of roads and railway bridges.	CO2	L2
2	Used for the design of Reinforced cement concrete straight slab culvert.	CO3	L6
2	Used for the design of Reinforced cement concrete skew slab culvert.	CO4	L6
3	Used for the design of longitudinal girders.	CO5	L6
3	Used for the design of Transverse girders.	CO6	L6
4	Used for the design of Reinforced cement concrete box culvert.	CO7	L6
4	Used for the design of Reinforced cement concrete pipe culvert.	CO8	L6
5	Used for the design of piers and abutments.	CO9	L6
5	Used for the selection of bearing depending on type of bridges.	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1		By applying the knowledge and finding the problem to manage projects and in multidisciplinary environments.	L2
1	CO1	PO2	3	Preliminary investigation Identify analyze complex engineering problems .	L2
1	CO1	PO3		Design/Development of solutions for investigated problems by applying complex engineering problems.	L2
1	CO1	PO11		By applying the knowledge and finding the problem to manage projects and in multidisciplinary environments.	L2
1	CO2	PO1		Apply the knowledge of civil engineering fundamentals to study the applied loads.	L2

1	CO2	PO2	1	Should be able to identify the problems reaching using first principle of mathematics.	L2
1	CO2	PO3	1	Design solution for complex engineering problems ans design system components by consideration of public health and safety.	L2
1	CO2	PO11	3	By applying the engineering knowledge and problem analysis. It will be helpful to continue projects.	L2
2	CO3	PO1	1	Apply the knowledge of mathematics is applicable to Design bending moment and shear force.	L6
2	CO3	PO2	1	By applying Engineering knowledge and analyze complex bending moment and shear force in rc slab culvert.	L6
2	CO4	PO1	1	Knowledge of engineering fundamentals is required to understand behavior of RC slab culvert.	L6
2	CO4	PO2	1	Analyse complex engineering problems reaching substantiated to Bending moment and shear force.	L6
2	CO4	PO3	1	Design a RC slab culvert for the complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety	
2	CO4	PO11	3	By applying the knowledge of design of bridge in slab culverts, as a member and leader in a team, to manage projects and in multidisciplinary environments .	
3	CO5	PO1	1	Apply the knowledge of mathematics is applicable to Design bending moment and shear force in longitudinal girder.	L6
3	CO5	PO2	1	By applying Engineering knowledge and analyze complex bending moment and shear force in longitudinal girder	L6
3	CO6	PO1	1	Knowledge of engineering fundamentals is required to understand behavior of Longitudinal girder.	L6
3	CO6	PO2	1	Analyse complex engineering problems reaching substantiated to Bending moment and shear force in longitudinal girder.	L6
3	CO6	PO3	1	Design a longitudinal and cross girder for the complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety	
3	CO6	PO11	3	By applying the knowledge of design of bridge on longitudinal and transverse girder as a member and leader in a team, to manage projects and in multidisciplinary environments .	
4	CO7	PO1	1	Knowledge of engineering fundamentals is required to understand behavior of Box Culvert	L6
4	CO7	PO2	1	Analyse complex engineering problems reaching substantiated to Bending moment and shear force for box culvert by kani's method.	L6
4	CO7	PO3	1	Design a Box Culvert for the complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety	
4	CO7	PO11	3	By applying the knowledge of Box culverts as a member and leader in a team, to manage projects and in multidisciplinary environments .	L6
4		PO1	1	Knowledge of engineering fundamentals is required to understand behavior of Pipe culvert.	
4		PO2	1	Analyse complex engineering problems reaching substantiated to Bending moment and shear force in Pipe culvert.	
4		PO3	1	Design a Pipe culverts for the complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety.	
4	CO8	PO11	3	By applying the knowledge of design of pipe culverts as a member and leader in a team, to manage projects and in multidisciplinary environments .	
5	COg	PO1	1	Apply the knowledge of mathematics is applicable to Design loads on piers and abutments.	L2

5	CO9	PO2	1	By applying Engineering knowledge and analyze complex loading conditions in design of pier and abutments.	L2
5	CO10	PO1	1	Knowledge of engineering fundamentals is required to understand behavior of Piers and abutments.	L6
5	CO10	PO2	1	Analyse complex engineering problems reaching substantiated to Bending moment and shear force in Piers and abutments.	L6
5	CO10	PO3	1	Design a Pier and abutment for the complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety	
5	CO10	PO11	3	By applying the knowledge of design of Piers and abutments as a member and leader in a team, to manage projects and in multidisciplinary environments .	

2.06	2.33	2.4	1.75	2	2	-	1	-	2	1	-	2.33	
------	------	-----	------	---	---	---	---	---	---	---	---	------	--

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

00		y with mapping tevet for each CO-		pai	I, VV													
-	-	Course Outcomes										ome			1			-
Mod	CO.#			PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to		2	-	4	5	6	8	8	9	10	11	12	O1	02	03	el
1	15CV741.1	Understand the preliminary	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				L2
		investigation on bridges.	6	3										3				
1	15CV741.2	Understand the type of load is	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				L2
		suitable for design.	6	3										3				
2	15CV741.3	Design the Bending moment	2.0	-		-	-	-	-	-	-	-	-	-				L6
		and shear force by using working	6															
		stress method.																
2	15CV741.4	Design RC slab culvert.	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				L6
			6	3										3				
3	15CV741.5	Design the Bending moment		2.3	-	-	-	-	-	-	-	-	-	-				L6
		and shear force for longitudinal		3														
		girder by using courbons																
		method.																
3	15CV741.6	Design the Bending moment		2.3	-	-	-	-	-	-	-	-	-	-				L6
		and shear force for transverse		3														
		girder by using courbons																
		method.																
4	15CV741.8	Design the Bending moment for	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				L6
		box culvert by kanis method.	6	3										3				
4	15CV741.8	Design the loads and design for	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				L6
		pipe culvert	6	3										3				
5	15CV741.9	Design the loads on the	2.0	2.3	-	-	-	-	-	-	-	-	-	-				L6
		abutments and piers.	6	3														
5	15CV741.10	Understand the purpose of	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				L2
		providing bearings.	6	3										3				
-	15CV741PC	Average attainment (1, 2, or 3)	2.0	2.3	2.4	-	-	-	-	-	-	-	-	2.3				-
			6											3				
-	PO, PSO	1.Engineering Knowledge; 2.Prob																
		4.Conduct Investigations of Compl																
		Society; 8.Environment and S																
		10.Communication; 11.Project N	1an	age	eme	nt	ar	nd	Fir	nan	ce;	12	.Life	e-lo	ong	Le	гarr	ning;
			.					1 0	- 11/		D	•						1

5. Curricular Gap and Content

S1.Software Engineering; S2.Data Base Management; S3.Web Design

2			
3			
4			
5			

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	 Area	Actions Planned		Resources	PO Mapping
ules			Planned	Person	
1					
1					
2					
2					
3					
3					
4					
4					
5					
5					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. of	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction to bridges	08	2	-	-	1	1	2	CO1, CO2	L2
2	Design of straight and skew slab	08	2	-	-	1	1	2	CO3, CO4	L6
3	Design of T-beam	08	-	2	-	1	1	2	CO5, CO6	L6
4	Design of box and pipe culvert.	08	-	2	-	1	1	2	CO7, C08	L6
5	Design of piers and abutments	08	-	-	4	1	1	2	CO9, CO10	L2,L6
-	Total	40	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod		Weightage in	СО	Levels
ules		Marks		
	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L6
3, 4	CIA Exam – 2	15	CO5, CO6, CO8, Co8	L6
5	CIA Exam – 3	15	CO9, CO10	L2
	Assignment - 1	05	CO1, CO2, CO3, CO4	L6
3, 4	Assignment - 2	05	CO5, CO6, CO8, CO8	L6
5	Assignment - 3	05	CO9, CO10	L2
1, 2	Seminar - 1			
3, 4	Seminar - 2			
5	Seminar - 3			
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to bridges.	Appr Time:	08 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the preliminary investigation on bridges.	CO1	L2
2	Understand the type of load is suitable for design.	CO2	L2
b	Course Schedule	-	-
Class N	o Module Content Covered	CO	Level
1	Introduction to bridges, classification,	CO1	L2
2	computation of discharge, linear waterway,.	C01	L2
3	economic span, afflux.	CO1	L2
4	scour depth.	CO1	L2
5	Design loads for bridges. Introduction to I.R.C. loading standards,	CO2	L2
6	Load Distribution Theory,	CO2	L2
7	Bridge slabs, Effective width,	CO2	L2
8	Introduction to methods as per I.R.C	CO2	L2
С	Application Areas	CO	Level
1	Used in the preliminary study in the bridges .	CO1	L2
2	Used for the design of roads and railway bridges.	CO2	L2
d	Review Questions	-	-
1	What is Bridge Engineering? Discuss how the bridges may be classified?	CO1	L2
2	Explain the components of bridge with neat sketch?	CO1	L2
3	Briefly explain linear waterway and economic span of bridge?	CO1	L2
4	Define afflux, scour, computation of discharge?	CO1	L2
6	Briefly explain the design loads for bridges?	CO2	L2
7	Explain load distribution theory in bridges?	CO2	L2
8	Introduction to methods as per IRC?	CO2	L2
е	Experiences	-	-
1			
2			
3			
4			
4			

Module – 2

Title:	Design of deck slab	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design the Bending moment and shear force by using working stress method.	CO3	L2
2	Design the Bending moment and shear force by using working stress method.	CO4	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Design of straight slab culvert?	CO3	L6
2	Problems	CO3	L6
3	Problems	CO3	L6
4	Problems	CO3	L6
5	Design of skew slab culvert?	CO4	L6

6	Problems	CO4	L6
7	Problems	CO4	 L6
8	Problems	CO4	L6
		· ·	
С	Application Areas	СО	Level
1	Used for the design of Reinforced cement concrete straight slab culvert.	CO3	L2
2	Used for the design of Reinforced cement concrete skew slab culvert.	CO4	L2
d	Review Questions	-	-
1	Design a deck slab for the following particulars:	CO3	L2
	Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mm.		
	Loading: I R C Class AA(tracked) , Road : Two-lane (7.5m)		
	Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		
2	Design a deck slab culvert for I R C Class A Loads.	CO3	L2
	Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm.		
	Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		
3	Design a skew slab culvert for a national highway crossing of a stream to suit the following data. Clean span= 6m Width of bearing = 370mm. Width of carriage way=7.5m Overall depth of slab =540mm wearing coat=80mm	CO3	L2
	skew angle=30°.		
	Type of loading = IRC class AA tracked vehicle.		
	Materials = M20 grade Concrete and Fe-415 HYSD bars.		
е	Experiences	-	-
1		CO1	L2
2			
3		00.5	1 -
4		CO3	L3
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code	15CV741 Sem: VII Marks: 15 Time: 75 r	minute	s	
Cour	rse:	Design of Bridges.			
-	-	Note: Answer any 1 questions from each module, each carry equal marks.	со	Level	Marks
		Module-1			
1	а	What is Bridge Engineering? Discuss how the bridges may be classified?	CO1	L2	8
	b	Explain the components of bridge with neat sketch?	CO1	L2	7
		OR			
2	а	Briefly explain the design loads for bridges?	CO1	L2	7
	b	Briefly explain linear waterway and economic span of bridge?	CO1	L2	8
3		Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m) Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	CO2	L6	15
		OR			

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

rs (ode: 15CV741	Model Assignment Questions L Sem: VIII Marks: 5 Time:	90 - 120	minut	25
Cours		of Bridges Module : 1, 2	90 120	, minut	
		to answer 2-3 assignments. Each assignment carries equal mark	(
SNo	USN	Assignment Description	Marks	СО	Leve
1.		What is Bridge Engineering? Discuss how the bridges may be classified?		CO1, CO2	L2
2		Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
3		Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked), Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
4		Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
5		What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
6		Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
8		What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
8		Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
9		Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked), Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
10		Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
11		What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
12		Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
13		What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
14		Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
15		Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked), Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
16		Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
18		What is Bridge Engineering? Discuss how the bridges may be classified?		CO1, CO2	L2
18		Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
19		What is Bridge Engineering? Discuss how the bridges may be	5	CO1,	L2

	classified?		CO2	
20	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
21	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
22	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
23	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
24	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
25	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
26	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
28	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
28	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
29	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
30	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
31	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
32	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
33	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
34	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
35	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
36	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
38	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
38	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
39	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
40	Design a deck slab culvert for I R C Class A Loads.	5	CO1	L6

	Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel,		,CO2	
41	Assume any missing data? What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
42	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
43	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
44	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
45	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
46	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
48	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
48	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
49	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
50	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
51	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
52	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
53	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
54	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
55	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
56	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
58	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
58	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?	5	CO1, CO2	L6
59	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
60	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
61	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2

62	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2
63	Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing coat: 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
64	Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80mm. Materials: M25 grade concrete and Fe 415 steel, Assume any missing data?		CO1, CO2	L6
65	What is Bridge Engineering? Discuss how the bridges may be classified?	5	CO1, CO2	L2
66	Explain the components of bridge with neat sketch?	5	CO1, CO2	L2

D2. TEACHING PLAN - 2

Module – 3

Title:	Design of T-beams	Appr Time:	8 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design the Bending moment and shear force for longitudinal girder by using courbons method.	CO5	L2
2	Design the Bending moment and shear force for transverse girder by using courbons method.	CO6	L2
b	Course Schedule		
Class No	Module Content Covered	со	Level
1	Design of T beam bridges (up to three girder only) Proportioning of components,	CO5	L6
2	analysis of slab using IRC Class AA tracked vehicle, structural design of slab,	CO5	L6
3	analysis of cross girder for dead load & IRC Class AA tracked vehicle, structural design of cross girder.	CO5	L6
4	Problem.	CO5	L6
5	Analysis of main girder using Courbon's method, calculation of dead load BM and SF,	CO6	L6
6	Problem	CO6	L6
7	Calculation of live load B M & S F using IRC Class AA Tracked vehicle. Structural design of main girder.	CO6	L6
8	Problem	CO6	L6
с	Application Areas	со	Level
1	Used for the design of longitudinal girders.	CO5	L2
2	Used for the design of Transverse girders.	CO6	L2
d	Review Questions	-	-
1	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).		L6
2	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?		L6

3	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).		L6
4	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder (a) 3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).		L6
е	Experiences	-	-
1			
2			
3			
4			
5			

Module – 4

Title:	Design of culverts	Appr Time:	08 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design the Bending moment for box culvert by kanis method.	C07	L6
2	Design the loads and design for pipe culvert	CO8	L6
b	Course Schedule		
Class No	o Module Content Covered	со	Level
1	Design of Box culvert (Single vent only),	CO7	L6
2	Problems	C07	L6
3	Problems	C07	L6
4	Problems	CO7	L6
5	Pipe culverts	CO8	L6
6	Problems	CO8	L6
7	Problems	CO8	L6
8	Problems	CO8	L6
с	Application Areas	со	Level
1	Used for the design of Reinforced cement concrete box culvert.	CO7	L6
2	Used for the design of Reinforced cement concrete pipe culvert.	CO8	L6
d	Review Questions	-	-
1	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?		L6
2	Design a Box culvert having of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?		L6
3	Hydraulic design of pipe culvert?	CO8	L6
4	Culvert entrance structures, Structural design of pipe culvert?	CO8	L6
5	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is		L6

	3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C_e =1.5, C_s =0.010and the unit weight of the soil =20Kn/m ³ · 3 edge bearing =72Kn/m?		
	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 2:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load. Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ · 3 edge bearing =72Kn/m?		L6
е	Experiences	-	-
1		CO7	L2
2			
3			
4		CO8	L3
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code		Sem:	VII	Marks:	15	Time:	75	minute	S	
Cour	rse:	Design Con									
-	-	Note: Ansv marks.	ver any 1	question	s from each	module,	each carry	equal	Marks	со	Level
		Module-3									
1	а	Design of L main girde considered thickness=8	er @3 c/c , Road wid 80mm, Use pending n	c, live loa Ith is 7.5m e M25 grad noment ar	f RCC T-Bear Id of IRC C with foot path de concrete, Id shear force data)	lass AA f n on both : FE-415 gra	tracked veh sides, wearin ade steel Co	icle is g coat mpute	15	CO5	L2
	b	main girde considered thickness=8	r @3 c/a , Road wid 80mm, Use pending m	c, live loa Ith is 7.5m e M25 grad noment ar		lass AA t n on both : FE-415 gra	tracked veh sides, wearin ade steel Co	icle is g coat mpute	15	CO5	L2
2	a	Slab thickn 3.5m c/c, IF	an=14m, R ess=220m RC class A	oad width m, 3Longi A Tracked	OR owing data: =7.5m, Thickno tudinal girde vehicle , Mate orcement De	r @ 3m c erial M25 g	:/c, cross gii	der @	15	CO6	L2
	b	main girde considered thickness=8 maximum I load?(Assur	er @3 c/c , Road wic 80mm, Use pending n	c, live loa Ith is 7.5m e M25 grad noment ar	f RCC T-Bear Id of IRC C with foot path de concrete, Id shear force data).	lass AA i n on both : FE-415 gra	tracked veh sides, wearin ade steel Co	icle is g coat mpute	15	CO6	L2
		Module-4		h '				· · · · · · · · · · · · · · · · · · ·			
1	a	to DL of 14k of soil is 18 Adopt M25 sketch the 1	N/m² and kN/m² ard and FE415 reinforcem	LL of IRC nd angle c 5 in the des nent details		acked vehi oil may be l is nationa	icle, the unit e assumed a al highway ar	weight Is 30° , Id also	15		
2	а	to DL of 14k of soil is 18 Adopt M25	N/m² anc kN/m² ar and FE50	I LL of IRC nd angle c 00 in the c	ide dimensio Clause AA tra of repose of s design. The r etails of box?	icked vehi oil may bo oad is nat	icle, the unit e assumed a	weight is 30° ,	15		

Hydraulic design of pipe culvert?	07	
Culvert entrance structures, Structural design of pipe culvert?	07	

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

					el Assignmer	t Questions	5	r		
Crs C	ode:	15CV741	Sem:	VII	Marks:	5	Time:	90 – 120	minutes	5
Cours			of Bridges							
			to answer 2-				arries equal ma			
SNo	V							Marks	CO	Level
1				0	0		bridge of spa	-	CO7,C	L6
							f IRC Class A 7.5m with fo		08	
							0mm, Use M2			
							oute maximu			
			-		•		ad load and liv			
					e missing data					
2					or the followi			5	CO7,C	L6
							ess of Wearir		08	
			coat=80mm			-				
			Slab thickne	ess=220mn	n, 3Longitudi	nal girder @) 3m c/c, cros	ss		
			girder @ 3.5	m c/c, IRC	class AA Tra	cked vehicl	e , Material Ma	25		
			grade conci Details?	rete, FE-41	5 grade stee	l, sketch th	e reinforceme	nt		
3							bridge of spa		CO7,C	L6
							of IRC Class A		08	
							7.5m with fo			
			•		0		omm, Use Ma	-		
							oute maximu			
							nd load and liv	/e		
					e missing data		bridge of spa	an 5	CO7,C	L6
4			14m with 3	main girc	der @3 c/c,	live load o	of IRC Class A 7.5m with for	A	08	LU
							omm, Use M2 oute maximu			
			bending mo	oment and		due to dea	nd load and liv			
5							3mX3m and i	ts 5	CO7,C	L6
5			subjected to vehicle, the	o DL of 14k unit weigh	N∕m² and L t of soil is 18∤	L of IRC Cla KN/m² and	ause AA tracke angle of repos	ed Se	08	20
				e road is i	national high		nd FE415 in th also sketch th			
6						e dimensio	n 3mX2.5m ar	nd 5	CO7,C	L6
-							IRC Clause A		08	
							I/m ² and ang			
							Adopt M25 ar			
							ghway and als	60		
					ent details of	box?				
7			Hydraulic de	esign of pip	pe culvert?			5	CO7,C 08	L6
8			Culvert entr	ance struc	tures, Structu	ıral design (of pipe culvert	? 5	CO7,C 08	L6
9			6m. The wic 10m. The sic discharge is	dth of the de slope of 5m³/s. Th	road is 7.5m f the embank e safe velocit	and the for ment is 1.5:: y is 3m/s. 0	kment of heig rmation width 1. The maximu Class AA tracke ne bell mouthe	is m ed	CO7,C 08	L6

	entry, Given Ce=1.5, Cs=0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?			
10	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 2:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?	5	CO7,C O8	L6
11	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data)	5	CO7,C 08	L6
12	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	5	CO7,C 08	L6
13	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
14	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C O8	L6
15	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
16	Design a Box culvert having of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
17	Hydraulic design of pipe culvert?	5	CO7,C 08	L6
18	Culvert entrance structures, Structural design of pipe culvert?	5	CO7,C 08	L6
19	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ 3 edge bearing =72Kn/m?	5	CO7,C 08	L6

	COORSE PLAN - CAT 2019-20			
20	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 2:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ 3 edge bearing =72Kn/m?	5	CO7.C 08	L6
21	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data)	5	CO7.C 08	L6
22	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	5	CO7,C 08	L6
23	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
24	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
25	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
26	Design a Box culvert having of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
27	Hydraulic design of pipe culvert?	5	CO7,C 08	L6
28	Culvert entrance structures, Structural design of pipe culvert?	5	CO7,C 08	L6
29	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?	5	CO7,C 08	L6
30	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is	5	CO7,C 08	L6

	COOKSE FEAR - CAT 2019-20			
	10m. The side slope of the embankment is 2:1. The maximum discharge is $5m^3/s$. The safe velocity is $3m/s$. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?			
31	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data)	5	CO7,C 08	L6
32	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	5	CO7,C 08	L6
33	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
34	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
35	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
36	Design a Box culvert having Of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
37	Hydraulic design of pipe culvert?	5	CO7,C 08	L6
38	Culvert entrance structures, Structural design of pipe culvert?	5	CO7,C 08	L6
39	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?	5	CO7,C 08	L6
40	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 2:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked	5	CO7,C 08	L6

	vehicle is to be considered as live load . Assume bell mouthed			
	entry, Given C_e =1.5, C_s =0.010and the unit weight of the soil			
	=20Kn/m ³ ·3 edge bearing =72Kn/m?			
41	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data)	5	CO7,C 08	L6
42	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	5	CO7,C 08	L6
43	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
44	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C O8	L6
45	Design a Box culvert having Of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
46	Design a Box culvert having Of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
47	Hydraulic design of pipe culvert?	5	CO7,C 08	L6
48	Culvert entrance structures, Structural design of pipe culvert?	5	CO7,C 08	L6
49	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?	5	CO7,C O8	L6
50	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 2:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load. Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil	5	CO7,C 08	L6

	=20Kn/m ³ 3 edge bearing =72Kn/m?			
51	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data)	5	CO7.C 08	L6
52	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	5	CO7,C 08	L6
53	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
54	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
55	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
56	Design a Box culvert having of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
57	Hydraulic design of pipe culvert?	5	CO7,C 08	L6
58	Culvert entrance structures, Structural design of pipe culvert?	5	CO7,C 08	L6
59	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load . Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ 3 edge bearing =72Kn/m?	5	CO7.C 08	L6
60	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 2:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load. Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ 3 edge bearing =72Kn/m?	5	CO7.C 08	L6
61	Design of Longitudinal girder of RCC T-Beam bridge of span	5	CO7,C	L6

	14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data)		08	
62	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	5	CO7,C 08	L6
63	Design of Longitudinal girder of RCC T-Beam bridge of span 16m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
64	Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	5	CO7,C 08	L6
65	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6
66	Design a Box culvert having Of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	5	CO7,C 08	L6

D3. TEACHING PLAN - 3

Module – 5

Title:	Engineering Services.	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design the loads on the abutments and piers.	CO9	L6
2	understand the purpose of providing bearings.	CO10	L2
b	Course Schedule		
Class N	Module Content Covered	СО	Level
1	Substructures – Design of Piers	CO9	L6
2	Problems	CO9	L6
3	abutments.	CO9	L6
4	Problems	CO9	L6
5	Problems	CO9	L6

6	Problems	CO9	L6
7	Introduction to Bridge bearings,	CO10	L2
8	Hinges and Expansion joints.(No design)	CO10	L2
С	Application Areas	со	Leve
1	Used for the design of piers and abutments.	CO9	L6
2	Used for the selection of bearing depending on type of bridges.	CO10	L2
d	Review Questions	-	-
1	Data	CO9	L6
	Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.		
	Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considered in design here. It is required to		
	Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the		
2	Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considered in design here. It is required to check the adequacy of the dimensions.		L6
2	Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considered in design here. It is required to check the adequacy of the dimensions.		L6
2	Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considered in design here. It is required to check the adequacy of the dimensions. Data Preliminary dimension : Shown in figure		L6
	Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considered in design here. It is required to check the adequacy of the dimensions. Data Preliminary dimension : Shown in figure Superstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m Types of abutment : Reinforced concrete. Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³	CO9 CO10 CO10	

	sketches?		
6	What are the forces to be considered for the design of piers?	CO10	L2
7	List the types of bearings used for bridges and mention the functions of bearings?	CO10	L2
8	Explain rocker bearings and rocker and roller bearings with neat sketches?	CO10	L2
е	Experiences	-	-
1		CO9	L2
2			
3			
4		CO10	L2
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

			minute	S	
Coui	rse:	Design of Bridges Note: Answer any 1 questions from each module, each carry equal	Marke	<u> </u>	
-	-	Note: Answer any 1 questions from each module, each carry equal marks.	marks	со	Level
		Module-5			
1	a	Dead load from each span = 2250kN Reaction due to live load on one span=900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in design here. It is required to check the adequacy of the dimensions.	15	CO9	L6
2	a	OR			
		Data Priliminary dimension : Shown in figure	15	COg	L6
15CV7	741 / A		:AAS. All	rights re	eserve

		Superstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m Types of abutment : Reinforced concrete. Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³			
1	a	Mention the difference between the expansion bearings and fixed bearings?	08	CO10	L2
	b	Write a note on pot bearing with neat sketch?	07	CO10	L2
		What are the difference types of piers, wing walls and abutments with neat sketches?			
2	а	What are the forces to be considered for the design of piers?	05	CO10	L2
	b	List the types of bearings used for bridges and mention the functions of bearings?	10	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

					odel Assignme	nt Quest				
Crs Co		15CV741		VIII	Marks:	5	Time:	90 – 120	minute	S
Cours			of Bridges			Modu				
			o answer 2-			<u> </u>	nt carries equal ma			
SNo	<u> </u>	JSN		A	ssignment De	scriptio	n	Marks	CO	Level
1			Foundation:	ure: Simp Well fou	bly supported indation. $\frac{1}{2700}$ $\frac{2700}{10$	T-beam T-beam	of 21.3m span. kN sec	5	COg	L2
2			Live load: IR effect only t design here dimensions. Data	C Class , he straig e. It is r	n : Shown in fig	whicheve the pier heck the	er produces sever will be considerd e adequacy of th	in	COg	L2
15CV74:	1 / A					41	Copyright ©20)18. cAAS. A	l rights r	eserved.

2600 † 1000 † 1200 4800

	COOKSET EAR CAT 2019 20			
	Superstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³			
3	Mention the difference between the expansion bearings and fixed bearings?	5	CO10	L2
4	Write a note on pot bearing with neat sketch?	5	CO10	L2
5	What are the difference types of piers, wing walls and abutments with neat sketches?		CO10	L2
6	What are the forces to be considered for the design of piers?	5	CO10	L2
8	List the types of bearings used for bridges and mention the functions of bearings?	5	CO10	L2
8	Explain rocker bearings and rocker and roller bearings with neat sketches?	5	CO10	L2
9	Data Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.		COg	L2
10	Data Priliminary dimension : Shown in figure	5	CO9	L2

[]				
	Superstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³			
11	Mention the difference between the expansion bearings and fixed bearings?	5	CO10	L2
12	Write a note on pot bearing with neat sketch?	5	CO10	L2
13	What are the difference types of piers, wing walls and abutments with neat sketches?	5	CO10	L2
14	What are the forces to be considered for the design of piers?	5	CO10	L2
15	List the types of bearings used for bridges and mention the functions of bearings?	5	CO10	L2
16	Explain rocker bearings and rocker and roller bearings with neat sketches?	5	CO10	L2
18	Data Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.	5	CO9	L2
18	Data Priliminary dimension : Shown in figure	5	CO9	L2

19	Mention the difference between the expansion bearings and fixed bearings?	5	CO10	L2
20	Write a note on pot bearing with neat sketch?	5	CO10	L2
21	What are the difference types of piers, wing walls and	5	CO10	L2
	abutments with neat sketches?	5		
22	What are the forces to be considered for the design of piers?	5	CO10	L2
23	List the types of bearings used for bridges and mention the	5	CO10	 L2
23	functions of bearings?	5		
24	Explain rocker bearings and rocker and roller bearings with	5	CO10	L2
24	neat sketches?	5		LZ
25	Data		<u> </u>	1.2
25	Dead load from each span = 2250kN Reaction due to live load on one span-900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in	5	CO9	L2
26	design here. It is required to check the adequacy of the dimensions. Data Priliminary dimension : Shown in figure	5	CO9	L2
	uperstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³			
28	uperstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³ Mention the difference between the expansion bearings and fixed bearings?	5	CO10	L2
28	uperstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³ Mention the difference between the expansion bearings and fixed bearings? Write a note on pot bearing with neat sketch?	5	CO10	L2 L2
-	uperstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³ Mention the difference between the expansion bearings and fixed bearings?			
28	uperstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³ Mention the difference between the expansion bearings and fixed bearings? Write a note on pot bearing with neat sketch? What are the difference types of piers, wing walls and	5	CO10	L2

	functions of bearings?]
32	Explain rocker bearings and rocker and roller bearings with	5	CO10	L2
	neat sketches?	5		
33	Data	5	CO9	L2
	Superstructure: Simply supported T-beam of 21.3m span.	<u> </u>		
	Foundation: Well foundation.			
	BEARING 1			
	1450			
	8 2700			
	SECTION BOTTOM			
	Dead load from each span = 2250kN			
	Reaction due to live load on one span=900kN			
	Maximum mean velocity of current =3.6m/sec			
	Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer			
	effect only the straight portion of the pier will be considerd in			
	design here. It is required to check the adequacy of the			
	dimensions.			
	Data		00-	
34	Data Priliminary dimension : Shown in figure	5	CO9	L2
	лэрролсн здав.			
	\$ → → → → → → → → → →			
	g BREAST WALL			
	HEEL TOE			
	2800 1 1000 1 1200			
	4800			
	Superstructure : T-beam two -lane bridge of effective span			
	16.1 m. Overall length = 17.26 m. Types of abutment :			
	Reinforced concrete Loading : As for National Highway. Back			
	fill : Given with angle of repose =35°. Unit weight of back fill, W=			
\mid	18 Kn/m ³			
35	Mention the difference between the expansion bearings and	5	CO10	L2
36	fixed bearings? Write a note on pot bearing with neat sketch?	F	CO10	L2
30	What are the difference types of piers, wing walls and	<u>5</u>	CO10 CO10	L2 L2
	abutments with neat sketches?	5		
38	What are the forces to be considered for the design of piers?	5	CO10	L2
39	List the types of bearings used for bridges and mention the	5	CO10	L2
	functions of bearings?		00/5	
40	Explain rocker bearings and rocker and roller bearings with neat sketches?	5	CO10	L2
41	Data	5	CO9	L2
	Superstructure: Simply supported T-beam of 21.3m span.	5	209	

	COURSE PLAN - CAY 2019-20			
	Foundation: Well foundation.			
	BEARING H.F.L. THI 1450 1800 2700 2700 2700 2700 2700 2700 2700 2			
	Dead load from each span = 2250kN Reaction due to live load on one span=900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in design here. It is required to check the adequacy of the dimensions.			
42	Data Priliminary dimension : Shown in figure	5	CO9	L2
	16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³			
43	Mention the difference between the expansion bearings and fixed bearings?	5	CO10	L2
44	Write a note on pot bearing with neat sketch?	5	CO10	L2
45	What are the difference types of piers, wing walls and abutments with neat sketches?	5	CO10	L2
46	What are the forces to be considered for the design of piers?	5	CO10	L2
48	List the types of bearings used for bridges and mention the functions of bearings?	5	CO10	L2
48	Explain rocker bearings and rocker and roller bearings with neat sketches?	5	CO10	L2
49	BEARING Image: December 2010 million HEL Image: December 2010 million HEL Image: December 2010 million Image: December 2010 million Image: December 2010 million	5	CO9	L2
15CV741 / A	Copyright ©2018	. caas. a	ll rights re	eserved.

SECTION

PLAN AT BOTTOM

	Dead load from each span = 2250kN Reaction due to live load on one span=900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in design here. It is required to check the adequacy of the dimensions.			
50	Data	5	COg	L2
51	Priliminary dimension : Shown in figure	5	C010	L2
51	fixed bearings?	5		
52	Write a note on pot bearing with neat sketch?	5	CO10	L2
53	What are the difference types of piers, wing walls and abutments with neat sketches?	5	CO10	L2
54	What are the forces to be considered for the design of piers?	5	CO10	L2
55	List the types of bearings used for bridges and mention the functions of bearings?	5	CO10	L2
56	Explain rocker bearings and rocker and roller bearings with neat sketches?	5	CO10	L2
58	Data Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.	5	CO9	L2
15CV741 /	Copyright ©2018.	caas. A	ll rights re	served.

PLAN AT BOTTOM

SECTION

	Dead load from each span = 2250kN Reaction due to live load on one span=900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in design here. It is required to check the adequacy of the dimensions.			
58	Data Priliminary dimension : Shown in figure	5	CO9	L2
59	18 Kn/m ³ Mention the difference between the expansion bearings and	5	CO10	L2
	fixed bearings?			
60 61	Write a note on pot bearing with neat sketch? What are the difference types of piers, wing walls and	<u>5</u> 5	CO10 CO10	L2 L2
	abutments with neat sketches?			
62 63	What are the forces to be considered for the design of piers?List the types of bearings used for bridges and mention the	<u>5</u> 5	CO10 CO10	L2 L2
64	functions of bearings? Explain rocker bearings and rocker and roller bearings with neat sketches?	5	CO10	L2
65	Data Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.	5	CO9	L2
15CV74	1/A	caas. A	ll rights re	eserved.

PLAN AT BOTTOM

SECTION

	Dead load from each span = 2250kN Reaction due to live load on one span=900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in design here. It is required to check the adequacy of the dimensions.		
66	Data Priliminary dimension : Shown in figure Superstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m. Types of abutment : Reinforced concrete Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³	CO9	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cours	rse: Design of bridges Month / Year		′ Year	ar May /201			
Crs C	ode:	15CV741 Sem: VII Marks:	80	Time:		180 mi	nutes
-	Note	Answer all FIVE full questions. All questions carry equ	ıal marks.		Marks	CO	Level
		Module-1					
1	а	What is Bridge Engineering? Discuss how the bridges	s may be clas	sified?	8	CO1	L2
	b	Explain the components of bridge with neat sketch?			8	CO1	L2
		OR					
2	а	Briefly explain the design loads for bridges?			8	CO1	L2
	b	Briefly explain linear waterway and economic span of	bridge?		8	CO1	L2
		Module-2					
3		Design a deck slab for the following particularsClea				CO2	L6
		footpath: 1m on either side, Wearing coat: 80mml					
		4A(tracked), Road Two-lane (7.5m). Materials: M25 grade concrete and Fe					
		415 steel, Assume any missing data?					
		OR					
4		Design a deck slab culvert for I R C Class A Loads C				CO2	L6
		of bridge: 12m on either side, Wearing coat: 80mm.	Materials: M2	25 grade			

	concrete and Fe 415 steel, Assume any missing data?			
5	Module-3 Design of Longitudinal girder of RCC T-Beam bridge of span 14m with 3 main girder @3 c/c, live load of IRC Class AA tracked vehicle is considered, Road width is 7.5m with foot path on both sides, wearing coat thickness=80mm, Use M25 grade concrete, FE-415 grade steel Compute maximum bending moment and shear force due to dead load and live load?(Assume suitable missing data).	16	CO5	L6
	OR			
6	Design a cross girder for the following data: Effective span=14m, Road width=7.5m, Thickness of Wearing coat=80mm, Slab thickness=220mm, 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class AA Tracked vehicle , Material M25 grade concrete, FE-415 grade steel, sketch the reinforcement Details?	16	CO6	Lĉ
	Madula (
7 a	Module-4 Design a Box culvert having Of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	16	CO7	L6
8 a	Design a pipe culvert through a road embankment of height 6m. The width of the road is 7.5m and the formation width is 10m. The side slope of the embankment is 1.5:1. The maximum discharge is 5m ³ /s. The safe velocity is 3m/s. Class AA tracked vehicle is to be considered as live load. Assume bell mouthed entry, Given C _e =1.5, C _s =0.010and the unit weight of the soil =20Kn/m ³ ·3 edge bearing =72Kn/m?	10	CO8	L6
b		6	C07	L2
	Module-5	•	,	
9 a		9	CO9	L2
k	What are the difference types of piers, wing walls and abutments with neat sketches?	8	CO9	L2
10 a	OR Data Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.	16	CO10	L6
	$\begin{array}{c} \hline \\ H = L \\ \hline \\ H = L \\$			

2. SEE Important Questions

Cours			nth / Year		
Crs C		15CV741 Sem: VII Marks: 100 Tim	e:	180 m	inutes
		Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mod ule	Qno.		Marks	CO	Year
1	1	What is Bridge Engineering? Discuss how the bridges may be classified	1? 9	CO1	
	2	Explain the components of bridge with neat sketch?	8	CO1	
	3	Briefly explain linear waterway and economic span of bridge?	8	CO1	
	4	Define afflux, scour, computation of discharge?	8	CO1	
	6	Briefly explain the design loads for bridges?	9	CO2	
	7	Explain load distribution theory in bridges?	9	CO2	
	8	Introduction to methods as per IRC?	8	CO2	
2		Design a deck slab for the following particulars: Clear span: 6m, Width of footpath: 1m on either side, Wearing co 80mmLoading: I R C Class AA(tracked) , Road : Two-lane (7.5m).Materi		CO3	
	2	M25 grade concrete and Fe 415 steel, Assume any missing data? Design a deck slab culvert for I R C Class A Loads. Clear span: 5m, Width of bridge: 12m on either side, Wearing coat: 80m Materials: M25 grade concrete and Fe 415 steel, Assume any miss data?		CO3	
	3	Design a skew slab culvert for a national highway crossing of a stream suit the following data. Clean span= 6m Width of bearing = 370mm. Width of carriage way=7.5m Overall depth of slab =540mm wearing coat=80mm skew angle=30°. Type of loading = IRC class AA tracked vehicle. Materials = M20 grade Concrete and Fe-415 HYSD bars.	10 16	CO3	
3		Design of Longitudinal girder of RCC T-Beam bridge of span 14m wit main girder @3 c/c, live load of IRC Class AA tracked vehicle considered, Road width is 7.5m with foot path on both sides, wearing c thickness=80mm, Use M25 grade concrete, FE-415 grade steel Comp maximum bending moment and shear force due to dead load and l load?(Assume suitable missing data).	is oat ute	CO5	
		Design a cross girder for the following data: Effective span=14m, Rowidth=7.5m, Thickness of Wearing coat=80mm,bSlab thickness=220m 3Longitudinal girder @ 3m c/c, cross girder @ 3.5m c/c, IRC class Tracked vehicle, Material M25 grade concrete, FE-415 grade steel, ske the reinforcement Details?	nm, AA	CO5	
	3	Design of Longitudinal girder of RCC T-Beam bridge of span 16m wit main girder @3 c/c, live load of IRC Class AA tracked vehicle considered, Road width is 7.5m with foot path on both sides, wearing c thickness=80mm, Use M25 grade concrete, FE-415 grade steel Comp maximum bending moment and shear force due to dead load and l load?(Assume suitable missing data).	is oat ute	CO6	
		Design of Longitudinal girder of RCC T-Beam bridge of span 14m wit main girder @3 c/c, live load of IRC Class AA tracked vehicle considered, Road width is 7.5m with foot path on both sides, wearing c thickness=80mm, Use M25 grade concrete, FE-415 grade steel C omp maximum bending moment and shear force due to dead load and l	is oat ute	CO6	

	1				
		load?(Assume suitable missing data).			
4	1	Design a Box culvert having of side dimension 3mX3m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE415 in the design. The road is national highway and also sketch the reinforcement details of box?	16	CO7	
	2		16	CO7	
	2	Design a Box culvert having of side dimension 3mX2.5m and its subjected to DL of 14kN/m ² and LL of IRC Clause AA tracked vehicle, the unit weight of soil is 18kN/m ² and angle of repose of soil may be assumed as 30°, Adopt M25 and FE500 in the design. The road is national highway and also sketch the reinforcement details of box?	16	C07	
	3	Hydraulic design of pipe culvert?	07	CO8	
	4	Culvert entrance structures, Structural design of pipe culvert?	09	CO8	
5	1	Data Superstructure: Simply supported T-beam of 21.3m span. Foundation: Well foundation.	15	CO9	
		SECTION PLAN AT BOTTOM			
		Dead load from each span = 2250kN Reaction due to live load on one span=900kN Maximum mean velocity of current =3.6m/sec Material for pier: Cement concrete M20 grade Live load: IRC Class AA or Class A whichever produces severer effect only the straight portion of the pier will be considerd in design here. It is required to check the adequacy of the dimensions.			
	2	Data	15	CO9	
		Priliminary dimension : Shown in figure			
		Superstructure : T-beam two -lane bridge of effective span 16.1 m. Overall length = 17.26 m Types of abutment : Reinforced concrete. Loading : As for National Highway. Back fill : Given with angle of repose =35°. Unit weight of back fill, W= 18 Kn/m ³			
	3	Mention the difference between the expansion bearings and fixed	08	CO10	
	1	bearings?			

4 Write a note on pot bearing with neat sketch?

07 CO10

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA -Design of Bridges

						1 A A	
Мо							Assessment
dul			Learning			on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	Ε	F	G	Н
	Introduction to bridges, classification,	5	- L1	L2	Understa		Internal
	computation of discharge, linear waterway,	-	- L2			Lecture/	assessment
	economic span, afflux, scour depth. Design					PPT	and
	loads for bridges.						Assignment
1	Introduction to I.R.C. loading standards, Load	_	- L1	L2	Understa	Locturo /	Internal
1						PPT	
	Distribution Theory, Bridge slabs, Effective		- L2		nd	PPT	assessment
	width, Introduction to methods as per I.R.C.						and
							Assignment
2	Design of Straight Slab Bridges	5	- L6	L6	Design	Lecture	Internal
			- L6				assessment
							and
							Assignment
2	Design of Skew Slab Bridges	5	- L6	L6	Design	Lecture	Internal
			- L6				assessment
							and
							Assignment
3	Design of T beam bridges(up to three girder	5	- L6	L6	Design	Lecture	Internal
	only) Proportioning of components, analysis		- L6		Doolgin	Lootaro	assessment
	of slab using IRC Class AA tracked vehicle,		20				and
	structural design of slab, analysis of cross						Assignment
	girder for dead load & IRC Class AA tracked						Assignment
	vehicle, structural design of cross girder.				Decision	Looturo	Internal
3	Analysis of main girder using Courbon's	5	- L6	L6	Design	Lecture	
	method, calculation of dead load BM and SF,		- L6				assessment
	calculation of live load B M & S F using IRC						and
	Class AA Tracked vehicle. Structural design of						Assignment
	main girder.						
4	Design of Box culvert	5	- L6	L6	Design	Lecture	Internal
			- L6				assessment
							and
							Assignment
4	Design of Pipe culvert	5	- L6	L6	Design	Lecture	Internal
		_	- L6				assessment
							and
							Assignment
5	Substructures – Design of Piers and	5	- L6	L6	Design	Lecture	Internal
5	abutments.	5	- L6		Lesign	Lecture	assessment
							and
-	laturalization to Duidero la cuitana. L'hacer est				المواحيية	l	Assignment
5	Introduction to Bridge bearings, Hinges and	5	-L1	L2	Understa	Lecture	Internal
	Expansion joints.(No design)		-L2		nd		assessment
							and
							Assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Design of Bridges

				pt to Outcome - Des	- 3	
Mo dul e- #	Learning or Outcome from study of the Content or Syllabus	Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	Methodology, 4.Benchmark)	Course Outcome Student Should be able to
A	1	J	K	L	M	N
1		Effects of water discharge on bridges	Water discharge on bridges	Water Properties.	- Understand - Bridges - -	Understand the preliminary investigation on bridges.
	Understand the preliminary investigation on bridges.	Loads applicabl e on the bridges		Load on bridges.	- Understand - IRC Codes. - -	Understand the type of load is suitable for design.
	design.	finding bending moment and shear forces	moment , shear forces		- Design - Mathematical - Working stress method.	Design the Bending moment and shear force by using working stress method.
	by using working stress method.	finding bending moment and shear forces			- Design - Mathematical - Working stress method.	Design the Bending moment and shear force by using working stress method.
	Design the Bending moment and shear force by using working stress method.	Bending moment and shear force for T-beam bridge.	Bending moment and shear force for T-beam bridge. Courbon's method.	0	- Design - Mathematical - Working stress method.	Design the Bending moment and shear force for longitudinal girder by using courbons method.
	Bending moment and shear force for	Courbon's method of finding bending moment and shear force.		Cross girders.	- Design - Mathematical - Working stress method. -	Design the Bending moment and shear force for transverse girder by using courbons method.
4	Design the	and shear force, load	Moments and shear force, load distribution.	Box Culverts	- Design - Mathematical - Working stress method. -	Design the Bending moment for box culvert by kanis method.

	method.					
4	Design the Bending moment for box culvert by kanis method.	Pipe Culvert		Pipe Culverts.	- Design - Mathematical - Working stress method.	Design the loads and design for pipe culvert
5	Design the loads and design for pipe culvert	Sizes of the structural compone nts	and laying of the bridges.		- Design -Mathematical - Working stress method.	Design the loads on the abutments and piers.
5	Design the loads on the abutments and piers.	Bearings.		Bearings.	- Understand - Bearings.	Understand the purpose of providing bearings.
	Understand the purpose of providing bearings.					